On Ritt's decomposition theorem in the case of finite fields

نویسندگان

  • Jaime Gutierrez
  • David Sevilla
چکیده

A classical theorem by Ritt states that all the complete decomposition chains of a univariate polynomial satisfying a certain tameness condition have the same length. In this paper we present our conclusions about the generalization of these theorem in the case of finite coefficient fields when the tameness condition is dropped. (Updated April 2008: see note at the beginning of the introduction.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Ritt’s decomposition theorem in the case of finite fields

11 A classical theorem by Ritt states that all the complete decomposition chains of a univariate polynomial satisfying a certain tameness condition have the same length. In this paper we present 13 our conclusions about the generalization of these theorem in the case of finite coefficient fields when the tameness condition is dropped. 15 © 2005 Published by Elsevier Inc.

متن کامل

The Basic Theorem and its Consequences

Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...

متن کامل

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

Factorisation in the Ring of Exponential Polynomials

We study factorisation in the ring of exponential polynomials and provide a proof of Ritt's factorisation theorem in modern notation and so generalised as to deal with polynomial coeecients as well as with several variables. We do this in the more general context of a group ring of a divisible torsion-free ordered abelian group over a unique factorisation domain. We study factorisation in the g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finite Fields and Their Applications

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2006